
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Survey on FPGA based MLP Realization for
On-chip Learning

K. Packia Lakshmi, Dr. M. Subadra

Abstract— The objective of this work is to review the development steps of implementation of MLP neural network in FPGA device, during
the recent years. Each development to implement the neural architecture and activation function effectively were studied to take the work
one step forward to implement a cost effective, compact and effective on-chip trained neural network. Finally the off-chip trained MLP for
XOR problem is implemented on different hardware platform to show the importance of hardware platform selection for on-chip training.

Index Terms— ANN, MLP, FPGA, off-chip training, on-chip training, sigmoid function, XOR problem

——————————  ——————————

1 INTRODUCTION
RITIFICIAL Neural network is a field of artificial intelli-
gence (AI) used to models the human brain activities[1].
The designed analytical model is used to solve the given

tasks based on previous experience with reasonable accuracy,
at reasonable cost and in a reasonable amount of time [2].

Arificial neural network (ANN) provides efficient parallel
processing. Three important computational characteristics
typically associated with ANNs are parallelism, modularity
and dynamic adaptation [3]. A large variety of hardware has
been designed to exploit the inherent parallelism of the neural
network models [4].

The important characteristics [5] of the network depend on
a. Structure of the network
b. The activation functions of the processing ele-

ments
c. Learning mechanism of the network

A vast majority of neural networks are still implemented on
software on sequential machines. It is used for investing the
capability of network model and design new algorithms [6].
Although this is not necessarily always a severe limitation,
there is much to be gained from directly implementing neural
networks in hardware but without excessive costs [7], [8], [9].
Neural network hardware has been found to be useful in some
specialized areas, such as image processing, speech synthesis
and analysis, pattern recognition, high energy physics and so
on[6].

Neural network hardware is usually defined as those de-
vices designed to implement neural architectures and learning
algorithm. Especially those devices take advantage of the par-
allel nature inherent to ANNs [8], [9].

The main focus of this paper is to analyze the processing
steps of Field Programmable Gate Array (FPGA) implementa-
tion of neural network from the previous work and discuss the
future work proposed on FPGA implementation of neural

network for on-chip learning.

2 NEED FOR FPGA
ANN may realized by using analog systems or digital sys-
tems. Existing systems available may have it own advantages
and disadvantages. Some of the existing platforms available
for hardware implementation of ANN are summarized below,

2.1 Existing Devices
a. Genereal purpose parallel computer

Fine-grain parallel implementations on massively parallel
computers (either SIMD or MIMD) suffer from the connectivi-
ty of standard neural models. It may result in costly infor-
mation exchanges. Furthermore, massively parallel computers
are expensive resources and they cannot be used in embedded
applications.
b. DSP chips

DSP chips are a kind of processors: they perform given task
in a serial fahion. Calculations in ANNs can be performed in
parallel, but this parallelism cannot be exploited in DSP. So
DSP chips are not suted for ANN implementation.
c. Dedicated parallel computers

Neuro computers are parallel systems dedicated to neural
computing. They are based on computing devices such as
DSPs (digital signal processors). They are usually suffers from
their cost and their development time. So they are rapidly be-
come out-of-date, compared to the most recent sequential pro-
cessors.
d. Analog ASICs

They are very fast, dense and low power. But analog ASICs
introduce specific problems such as precision, data storage
and robustness. On-chip learning is difficult. It is an expensive
and nonflexible solution.
e. Digital ASICs

 Compared to analog chips digital ASICs provide more ac-
curacy. Digital ASICs are more robust. They can handle any
standard neural computation. Yet their design requires a
strong effort to obtain working chips and it is very expensive
when only a few chips are needed.

A

————————————————
 K. Packia Lakshmi is currently pursuing post graduation degree program

in Applied Electronics in Einstein College of Engineering, Tirunelveli.
E-mail: krishbagya@gmail.com

 Dr.M.Subadra is currently working as Professor& Head of Electronics and
Communication Department of Einstein College of Engineering,Tirunelveli
E-mail: subadra_m@yahoo.com

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 ASIC implementations have a performance advantage over
the other hardware choices.But once an ANN is implemented
as an ASIC; it is fixed, and the network configuration cannot
be modified. This is a major drawback of ASIC implementa-
tion.

2.2 Advantage of FPGA
FPGA based reconfigurable computing architectures are suit-
able for hardware implementation of neural networks [2], [6].
Some of the solutions provided by FPGA for ANN implemen-
tation are listed below,
a. Reprogrammable FPGAs permit prototyping

Moreover a good architecture that has been designed and
implemented may be replaced later by a better one without
having to design a new chip.
b. On-chip learning

In a reconfigurable FPGA, on-chip learning may be per-
formed prior to a specific optimized implementation of the
learned neural network on the same chip.
c. Embedded application

FPGAs may be used for embedded applications when the
robustness and the simplicity of neural computations are most
needed, even for low-scale productions.
d. Reconfigurability

FPGA based implementations major advantage is that it
may be mapped onto new improved FPGAs. FPGA speeds
and areas approximately double each year. Even large neural
networks may soon be implemented on single FPGAs, provid-
ed that the implementation method is scalable enough.

FPGA based reconfigurable computing architectures are well
suited to implement ANNs as one can exploit concurrency
and rapidly reconfigure to adapt the weights and topologies of
an ANN [3], [4].
 In existing methods ANNs are realized on FPGA. They are
mainly static implementations for specific offline applications
without learning capability. In this type of implementations,
the purpose of using a FPGA is generally to gain performance
advantages through dedicated hardware and parallelism [10].
Interesting FPGA implementations schemes, specially using
XILINX FPGAs, have been reported [7].

3 ANN
Neural network is one of the soft computing tools. Artificial
neural network are composed of many simple processing unit
called neurons [5]. The connection between inputs
	[p୧	 , pଶ, pଷ	, … p୬] and neurons or between two neurons is
called the weight	[w୧	, wଶ, wଷ	, … w୬]. The goal of the networks
is to learn some association between input andoutput patterns.
Basic structure of a neuron with ‘n’ input is shown in figure.1

 Function of the neuron is described by the following equa-
tions

 x = ܾ +∑ p୧		௡

௜ୀଵ ௜ (1)ݓ

and

																																							y = f(x)																																																																	(2)

where,

x weighted sum input
 y neuron output
 b input bias

 f(x) → activation	function

3.1 MLP-Network Structure
Multi Layer Perceptron (MLP) is an important fully connected
feed forward artificial neural network model. It organizes
their neurons into three layers. The first layer is called the in-
put layer, the last one the output layer. The intermediate lay-
ers are called the hidden layers [11]. A simple MLP architec-
ture is shown in figure 2.

Fig. 1. Structure of a neuron (perceptron)

Fig. 2. Multi Layer perceptron architecture

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.2 Learning of MLP
To make decisions, the smart machines are trained on a set of
training (learning) examples. Learning is usually accom-
plished by modification of the connection weights. The only
information available to the network is the training data set.
The number of neurons, their structure and the corresponding
values of the weights are the subjects of learning procedure.

 Each new smart machine should be able to learn the prob-
lem in its areas of operation. In machine language problem
settings there is some unknown nonlinear dependency y= f(x)
between some high-dimensional input vector x and scalar y.
The only information available to the network is the training
data sets.

 Most popular algorithm used to train the MLP is back
propagation algorithm. Reason for the popularity is its power
and simplicity [12].

3.3 Activation function
Most of the artificial neuron models use the same way of ac-
tion to produce the total input signal, but they are different in
terms of how they produce an output response from this in-
put. Artificial neurons use an activation function to compute
their activation as a function of total input stimulus. Several
different functions may be used as an activation function; the
most distinguishing feature between existing neuron model is
precisely which transfer function they employ [5]. Some com-
mon activation functions used in the neural network literature
is listed out in the following Table 1.

TABLE 1
SOME COMMON ACTICATION FUNCTIONS

Name Function

Binary Threshold y=1;x≥0
y=0;x<0

Bipolar Threshold y=1;x≥0
y= -1;x<0

Sigmoid
 y = 1/(1 + eି୶)

Linear y=x

Saturating linear
y=1;x≥0
y=0;x<0

 y=x;0≤ x≤1

Symmetric saturating
linear

y=1;x>1
y= -1;x< -1

 y=x;-1≤ x≤1

Hyperbolic Tangent
Sigmoid y = (e୶		 − eି୶)/(e୶		 + eି୶)

Positive linear
y=x;x≥0
y=0;x<0

 Selection of activation function is depending on the appli-
cation. For back propagation training algorithms the deriva-
tive of the activation function is needed [13]; therefore, the
activation function selected must be differentiable. The logistic
or sigmoid function is satisfies this requirement. This is the
most commonly used soft-limiting activation function. Be-
cause it squashes the input range into 0 to 1 output range.

So hardware implementation of MLP needs the implemen-
tation of sigmoid activation function [14].

4 FPGA
Field Programmable Gate Arrays (FPGAs) is an efficient pro-
grammable device to replace the microprocessor yet faster to
develop the dedicated chips. FPGAs are completely pro-
grammable after the product is shipped. It uses the high cir-
cuit densities in modern processes to construct ICs. FPGA chip
consists of an array of logic cells surrounded by programma-
ble routing sources.

 FPGAs are the best choice for many low to medium vol-
ume custom logic applications. Compared to conventional ICs,
FPGAs are slower and are less efficient in area and power. But
the programming cost is zero. The cost per part is moderate to
high. As initial manufacturing costs for custom integrated cir-
cuit increases FPGA costs decrease, FPGAs become attractive
for more and lower to mid-volume, moderate power applica-
tions.

FPGAs are implemented with a flexible, regular and re-
programmable architecture of configurable logic blocks
(CLBs), interconnected by versatile programmable routing
channels and surrounded by a perimeter of programmable
input/output blocks (IOBs). These devices are configured for a
specific application by loading configuration data into internal
static memory cells. The data stored in the memory cells de-
termines the functionality of CLBs, IOBs and routing channels
in the FPGA. The FPGAs can read its configuration data from
an external serial PROM in master serial mode or an external
device can write data into it in slave serial mode. FPGA con-
sists of CLBs in an array of matrix form provide functional
elements for logic implementation. Each CLB has look-up ta-
bles, flip flops and group of multiplexers [15].

5 OFF-CHIP LEARNING
Off-chip learning is a learning process, which is take place in
PC. The sequentially executable software is used for learning
in PCs. The architecture, weights of ANN is fixed after the
completion of training. By using that MLP is implemented on
hardware. The researchers use FPGA implementation of MLP
network model in different application area. Each units of arti-
ficial neuron are implemented in hardware part separately.
The main requirement of this work is to effectively implement
the task with low cost, small module and low timing. The re-
searchers analyzed each algorithms and activation function to

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

improve the model performance. Mostly they implement the
model using Xilinx and MATLAB /Simulink tool [16], [17],
[18].

5.1 Neuron Implementation
Hardware realization of a Neural Network (NN), to a large
extent depends on the efficient implementation of a single
neuron [3].Different works has been done by the researchers to
effectively implement the neuron on hardware environment.

 Hoda and Mahmoud [1999] have implemented the RANN
for chemical classification, in an electronic nose. The system
consists of 4 neurons and 12 synapses. A neuron has been im-
plemented on a tiny chip using 2.0µm n-well CMOS technolo-
gy. The system test is under way for recognizing methanol,
acetone, benzene and chloroform chemicals. The design may
be altered for programmability to recognize other chemicals.
They conclude that the approximation used for this circuit is
acceptable with a maximum absolute error of 0.045[19].

 Jang et al. [2002] tried to develop a new electronic instru-
ment which resembles the human nose activity. The system
using the IC chip, reduce system size and cost; this small
module is used for many application. They use back propaga-
tion algorithm to measure gases and implement in CPLD of
two hundred thousand gate level chips by VHDL language.40
pins of the chip were used and 67% of logic cells was used for
the neural network implementation on the chip [20].

 Tomoo et al. [2002] researched simplified multi-layer neu-
ral networks to equip them in one-chip FPGA. They reex-
amined neuron function, bits number of connection-weights,
and learning methods; and proposed a “and/or”-neural net-
work and the network were designed by using HDL. They
conclude that the combination of the step/convex and linear
functions ie., step/convex function is used for the hidden-
layer and linear function on the output-layer is the best choice.
[21].
 Zheng [2006] et.al developed an intelligent controller based
on ANN using FPGA for a four rotor helicopter to be capable
of achieving vertical takeoff and to be able to sustain a speci-
fied attitude. They implemented the ANN on a Virtex-II Pro
XC2VP30 FPGA from Xilinx then analyzed the simulation re-
sults to highlight the performance of the hardware. They also
analyzed the practical limitation of off-line training. They spe-
cially focused on the on line training of neural network design.
They concluded that the on-line training improves the system
performance, integer data types was unsuitable for FPGA,
compared to software implementation of NN in the microcon-
troller FPGA provided an increase in processing speed [22].

 Himavathi et al. [2007] proposed a new FPGA implementa-
tion technique of the ANNs. Instead of realizing the whole
network on FPGA, they only implemented the largest layer of
the network and reused it for the other layers with the help of
a controller block. They claimed that their technique is very
effective in reducing the hardware cost of the ANNs with a
moderate overhead on the speed [23].

 Khalil [2008] proposed the hardware implementation using
back propagation algorithm. They analyzed the result in terms

of operating frequency and chip utilization. They provide the
construction solution for implementation of neural network
using FPGAs. They design and implement single neurons into
a multilayer forward BP neural network. Finally they conclude
that FPGAs constitute a very powerful option for implement-
ing ANNs. Since the designer can really exploit the ANNs
parallel processing capabilities [24].

 Alin et al. [2009] proposed a method to design neural net-
work by means of predefined block systems created in system
generator environment and it increased the possibility to cre-
ate a higher level design tools used to implement neural net-
work in logic circuits [14].

 Khodja et al. [2010] realized ANN on a FPGA board to con-
tribute in the hardware integration solo in the areas such as
monitoring, diagnosis, maintenance and control of power sys-
tem as well as industrial process. In this work, they proposed
a simple algorithm for the implementation of the ANN. The
proposed hardware synthesis algorithm is performed by the
system generator. They schedule the ANN on the system gen-
erator. The system generator generates VHDL code. They also
use MATLAB software for machine learning to obtain a small-
est squared error for 202 inputs [25].

5.2 Sigmoid Function Implementation
Networks performance and precision are depend on efficient
implementation of activation function on FPGA. The hard-
ware implementation of sigmoid activation is a very important
part of hardware implementation of ANN [26]. But direct im-
plementation of sigmoid activation function on FPGA is diffi-
cult due to its division and exponential function [10], [24].
Both operations require an inordinate amount of time and
hardware resource to compute [10]. So some approximation
methods are defined by researchers to find the better method
to implement the sigmoid function on hardware. More accu-
rate approximations will result in faster; better convergence,
hence more accurate results and those approximation methods
are valid for a variety of other sigmoid function. There has
been significant amount of research where take place in hard-
ware implementation of sigmoid function [27].

 Some approximation methods proposed by researchers to
implement sigmoid function on FPGA are Uniform Lookup
table methods (LUT), linear approximation methods, Piece
wise linear approximation method (PWL), PLAN approxima-
tion, A-law approximation, Allippi and Storti-Gajani approx-
imation, Piecewise second-order approximation and Lookup
table method with linear interpolation method.

a. LUT Method

This method works fast compared to piece-wise linear approx-
imation method, though the memory requirement is high. It
stores output for each input address so the memory require-
ment is high [20]. If there is not much concern about memory

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

mean this method is preferred. The timing control is deter-
mined by the way of look up address generating [26].

 Xiaobin et al. [2003] proposed a LUT based sigmoid func-
tion implementation and they proved that the suitable for both
hidden and output layer. The performance of sigmoid was
similar to the ANN which implement sigmoid with floating
point data [26].

 Savron et al. [2006] implemented the activation function
using LUT method. They may need two RAM blocks for im-
plementation [9].

b. Other Approximation Method

Bieu et al. [1994] proposed sum of steps approximation meth-
od to compute the sigmoid non-linearity and its derivative in
hardware [28].

 Basterrextea et al. [2001] presented a recursive algorithm
for approximating the sigmoid function [29].

 Tomoo et al. [2002] analyzed the sigmoid, linear, sine,
quadratic, double/single-bendy and step/convex functions on
the points of potential surface among learning points, calcula-
tion speed and probability of learning convergence [21].

 Jang et al. [2002] used discontinuity linear function to im-
plement the sigmoid function for their work [20]. Taylor series
expansion method gave a better performance/price tradeoff
over look up tables [25].

 Tommiska [2003] proposed a new approach called as com-
binational approximation. He concluded that the SIG-sigmoid
achieved better performance, by comparing it with the PWL
and second order approximation in terms of speed, required
area resources and accuracy measured by average and maxi-
mum error [30].

 Khalil et al. [2008] suggested the second order approxima-
tion method to implement the activation function. They com-
pared the real and hardware approximated activation func-
tion. Finally they concluded that this hardware approximated
activation function was implemented directly using digital
techniques [24].

 Alin et al. [2009] had done the Hardware implementations
of the sigmoid approximation in system generator, part of the
MATLAB/ Simulink environment. They also analyzed the
hardware resource consumption and generated errors for dif-
ferent FPGA implementation of 5 approximations proposed in
literature. Then they conclude that the best approximation
method is the PLAN function in the case in which the number
of the artificial neurons hardware implemented that use sig-
moid function as fire function is large than the number of the
BRAM blocks available in the FPGA circuit. If the number of
artificial neuron is lower than the total BRAM blocks available
in the FPGA circuit they suggest look up table method to ap-

proximate the sigmoid function [14].

 Khodja et al. [2010] proposed the sigmoid function imple-
mentation through the use of Taylor series. The sigmoid func-
tion was approximated in polynomial form. Then implement
it by using Xilinx library [25].

 Gomperts et al. [2011] combined the Look-up table method
with the interpolation method to address the reduced accura-
cy of LUT method while maintaining the generalization over
variety of functions. They maintained the algorithm flow by
using a state machine inside the activation function. When the
input was received, the result was registered at output after
five clock cycles [10].

 Panicker et al. [2012]Discussed the disadvantage of LUT
method and showed the approximation values of piece wise
approximation method. Piecewise linear (PWL) approxima-
tion method was used to obtain low values for both maximum
and average error with low computational complexity. The
PLAN approximation method used the digital gates to map
the input value into output and the obtained output value was
approximated one. The proposed method had the maximum
mean square error value of 0.00187 for bipolar sigmoid activa-
tion [31].

 Sahin et al. [2012] calculated the ex function for RadBas,
LogSig, and TanSig activation function using CORDIC-based
exponent calculator. So the neurons was used the normalized
value [32].

6 ON-CHIP LEARNING
On-chip learning is an open area of research. Presently, no
well defined method exists to define the network architecture
(Number of layers, number of neurons, type of activation
function, learning algorithm, etc) for a given task. Currently
systematic trial and error method is used to find the architec-
ture [33]. Some software tools like MATLAB are used for this
purpose [16].
 In hardware, there are more network characteristics to con-
sider, many dealing with precision related issues like data and
computational precision [37]. Similar simulation or fast proto-
typing tools for hardware are not well developed.

 Backpropagation algorithm is a standard benchmark learn-
ing algorithm for hardware based learning [38]. On-chip learn-
ing provide good portability to the device and also it is most
preferable for higher dimensional problems such as internet,
bioinformatics etc [34].

 Gomperts et.al [2011] proposed a framework for on-chip
learning task. They tried to exploit the reconfigurability prop-
erty of FPGAs to shift the flexibility of parameterized software
based ANNs and ANN simulators to hardware platforms.

 A main challenge available in on-chip learning is to find an
architecture that minimize hardware costs, while maximizing
performance, accuracy and parameterization. They compared
the performance of generalized network structure with other
hardware-based MLP implementation. Their proposed system

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

can reach 530 million connections per second offline and 140
million online. Their system was capable of producing accu-
rate convergence in training on par close to MATLAB simula-
tion. They preferred the Xilinx Virtex-5 SX50T FPGA platform
for their design [10].

7 MLP IMPLEMENTATION
MLP model is suitable to give solution for the non -linearly
separable problem. If a hyper plane is used to classify the giv-
en input problem classes means that problem is called as line-
arly separable. In real time applications the problems are non-
linearly separable. So the standard non-linear benchmark XOR
problem [1] is chosen for MLP implementation.

7.1 XOR Problem
XOR problem have 2 inputs and 1 output. Based on these re-
quirement structured MLP architecture to solve the XOR prob-
lem is shown in figure.3 [13]. By using off-chip training the
weight and number of neurons in each layer are fixed to con-
struct the MLP architecture.

 The detailed description of MLP architecture to solve the
XOR problem is given in Table 2.

TABLE 2
MLP ARCHITECTURE DESCRIPTION TO SOLVE XOR PROBLEM

Layer Activation function No. of neurons

Input Linear 2

Hidden Sigmoid 2

Output Sigmoid 1

7.2 Off-chip Training
In off-chip training, learning process relying on sequential
software execution [34]. In this work training was done by
using MATLAB software [16]. After the completion of training

the network structure and weights were fixed.
 The network was trained by using back propagation algo-
rithm, the obtained final updated weight value to solve the
XOR problem is given in Table 3. The performance of the net-
work was tested by given an unseen input vector to the net-
work. This process output is shown in Table 4.

TABLE 3
INITIAL AND UPDATED VALUE OF PARAMETERS

Parameter Initial Value Updated Value

v11 0.8147 5.6301

v12 0.1270 3.6205

v21 0.9058 5.6243

v22 0.9134 3.6052

w11 0.6324 6.9970

w12 0.0975 -7.5544

b1-1 0.2785 -2.2974

 b1-2 0.5469 -5.5193

b2 0.9575 -3.1571

TABLE 4

TESTING PHASE OF THE NETWORK

Test set Net output Final output

[1,1] -2.5536 0.0722

[0,0] -4.3211 0.0131

[0,1] 4.2722 0.9862

[1,0] 4.2699 0.9862

TABLE 5

 LEARNING RATE AND ERROR VALUE

Parameter Value

Learning rate 0.9

Error value 0.01

During the feedback pass of back propagation algorithm

weight updating process take place by reducing the MSE val-
ue till reach the specified error value given in table 5. The plot
for epoch Vs MSE (Mean Square Error) is shown in figure 4.
The given learning rate determines how fast the network gets
converged.

Fig. 3. MLP architecture to solve XOR problem

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 7
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 From this plot it may clear that for XOR problem the speci-
fied MLP structure may take 950 epochs to solve the problem.

7.3 Simulation & Synthesis Results of MLP
After the completion of training, the network structure is
fixed. To do the hardware implementation of the structure the
final updated weights value obtained during the training pro-
cess will be used. Design entry to do the hardware implemen-
tation was done by using VHDL [17], [18].

 Device utilized by the simple classical XOR problem on
FPGAdevice is shown in Table 6.

TABLE 6
DEVICE UTILIZED BY XOR PROBLEM

Logic Utilization Need for XOR Problem

No. of Slices 2464

No. of 4 input LUTs 4378

No. of bonded IOBs 96

Fig. 4. Epoch Vs MSE plot

Fig. 5. (a) RTL Schemativ View

Fig. 5. (b) RTL Schemativ View

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 8
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure.5.a, b shows the RTL schematic view of the synthesized
XOR problem. RTL schematic view shows the hardware area
required to solve the XOR problem. From this it is clear that
the inherent parallelism property of ANN is preserved. Fig-
ure.6. shows the simulation result for XOR problem on Mod-
elsim simulator tool. So it is clear that off-chip trained MLP to
solve the XOR problem is easily implemented in FPGA.

 During FPGA implementation, to preserve the precision of
network single precision floating point representation is used.
It may give better accurate result.

 Table 7 Shows the Comparison of Device utilization sum-
mary of off-chip based learning of XOR problem on different
device environment. From the comparison table it is clear that
for the same problem xc3s4000I-4fg900 device environment is
over fitted and the higher version is needed for the implemen-
tation.

TABLE 7

 COMPARISON OF DEVICE UTILIZATION PERCENTAGE SUMMARY

Logic Utilization
xc3s4000I

-4fg900
xc3s400-
4pq 208 xc3s1000-

fg456

No. of Slices
Over
fitted

61% 8%

No. of 4 input
LUTs 89% 63% 7%

No. of bonded
IOBs 60% 68% 15%

 In off-chip learning this may easy, because the architecture
is fixed and every needed for the given task implementation is
known in advance. But in on-chip learning this is not a case,
because more devices may make use of more resources but
some may require less compared to others [35].

 Latest Xilinx platform suited for on-chip learning is the
Xilinx Virtex-5 SX50T FPGA. This model of the Virtex-5 con-
tains 4080 CLBs and CLBs hold 8 logic function generator, 8
storage elements, a number of multiplexers and carry logic.
Now this platform is large enough to test a range of online
neural network of varying size [10], [36].

8 CONCLUSION
In this work various research works done by the researchers
for effective implementation of artificial neural networks in
FPGAs were analyzed. The complexity available in hardware
implementation of sigmoid function and the solution for it
also discussed. A simple MLP to solve classical XOR problem
is designed and it is implemented on different device envi-
ronment to shown the importance of hardware platform selec-
tion for on-chip learning. Finally the hardware based learning
concept was introduced. Then it is planned to implement the
neural network for on line classification problem.

9 FUTURE WORK
Based on the completed work it is planned to design an On-
Chip trained network to do the diabetic retinopathy classifica-
tion.

Fig. 6. Simulation Result

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 9
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ACKNOWLEDGMENT
The authors like to gratefully acknowledge the enthusiastic
support of their college management, principal and depart-
ment of ECE of Einstein College of Engineering, Tirunelveli.

REFERENCES
[1] Simon Haykin, Neural Networks: A Comprehensive Foundation, 2ed.

Addison Wesley Longman (Singapore) Private Limited, Delhi, 2001.
[2] http://ee.sharif.edu/~eeprojects/Electronics2/114.txt-project thesis.
[3] Himavathu.s, Muthuramalingam.A, Srinivasan.E, “Neural Network

Implementation Using FPGA: Issues and Application” World Acade-
my of Science, Engineering and Technology, no.48, pp. 625-631, 2008.

[4] Yihua Liao,“Neural Network in Hardware- Survey”,
http://bit.csc.lsu.edu/~jianhua/shiv2.pdf, 2001.

 [5] M.Gopal, Digital Control and Static Variable Methods. Tata McGraw
Hill,New Delhi, 1997.

[6] R.Gadea, J.Cerda, F.Ballester, A.Mocholi, “Artificial Neural Network
Implementation on a single FPGA of a Pipelined on-line Backpropa-
gation”, IEEE Conference Publication, pp. 225-230, 20-22 Sept, 2000.

[7] Jagath C. Rajapakse, FPGA Implementation of Neural Networks.Amos R.
Omondi,ISBN-10 0-387-28487-7@ Sprinker, 2006.

[8] R.Girones, A.Salcedo, “Implementation with FPGAs of a pipelined
On-line Backpropagation”, IEEE Conference Publications, 5-8 Sep,
1999.

[9] Savron and unsal, “Hardware Implementation of a feed forward
neural network using FPGAs”, ICONIP’06 Proceedings of the 13th in-
ternational conference on Neural information processing, vol.III, pp. 1105-
1112, 2006.

[10] Alexander Gomperts, Aghisek Ukil,“Development and Implemen-
ation of Parameterized FPGA-Based General Purpose Neural Net-
works for Online Applications”,IEEE Transaction on industrial infor-
matics, vol. 7, no.1, Feb, 2011.

[11] Sathish Kumar, Neural Networks: A Classroom Approach. Tata
McGraw-Hill Publishing Company Limited, New Delhi, 2004.

[12] David E. Rumelhart, BackPropagation: Theory, Architectures, and Appli-
cations. Yves Chauvin, google preview, 1995.

[13] Martin T. Hagan, Neural Network Design. Howard B. Demuth, and
Mark Beale, Thomson Learning, New Delhi, 2009.

[14] Alin Tisan, Stefen Oniga, Daniel MIC, Attila Buchman, “Digital Im-
plementation Of The Sigmoid Function For FPGA Circuits”, ACTA
Technica NAPOCENSIS Electronics and Telecommunication, vol.50, no.2,
2009.

[15] Neil H.E.Weste, CMOS VLSI DESIGN-A Circuits and Systems Perspec-
tive. Pearson 3rdEdition.(ISBN 978-81-7758-568-1),2003.

[16] R.Hunt, A Guide to MATLAB for Beginners and Experienced Users.
L.Lipsman, M.Rosenber, Cambridge University Press, ISBN-I3 978-0-
511-07792-0, 2001.

[17] J. Bhaskar, VHDL Primer. PTR Prentice Hall, 2003.
[18] A.Volnei, Circuit Design with VHDL. Pedroni, ISBN 0-262-16224-5,

Library of Congress Cataloging-in-Publication Data, 2004.
[19] S.A.Hoda and A.Mahmond, “Digital Neural Processing Unit For Electron-

ic Nose”, Proceedings of Ninth Great Lake Symposium on VLSI, IEEE
Computer Society, pp.236-237,1999.

[20] Eu-Ttum Jang, Wan-Young Chung, “Electronics Nose Module with
System on Chip”, IEEE proceeding of sensors, vol.2, pp.1335-1338, 2002.

[21] Tomoo Aoyama, Qianyi Wang, Ryosuke Suematsu, Ryosuke Shimi-

zu, Umpei Nagashima, “Learning Algorithm For a Neural Network
in FPGA”,IEEE Transaction, 2002.

[22] M. Zheng, M. Tarbouchi, D. Bouchard, J. Dunfield, (2006) “FPGA
Implementation of a Neural Network Control System for a Helicop-
ter” Proceedings of the 7th WSEAS International Conference on Neural
Networks, Cavtat, Croatia, pp.7-10, june 12-14, 2006.

[23] Himavathi S., Anitha D., Muthuramalingam A., “Feedforward Neu-
ral Network Implementation in FPGA Using Layer Multiplexing for
Effective Resource Utilization”, IEEE Trans. on Neural Networks, vol.
18. no. 3, 2007.

[24] Rafid Ahmed Khalil, “Hardware Implementation of Back propaga-
tion Neural Networks on Field programmable Gate Array(FPGA)”,
Al-Rafidain Engineering, vol.16, no.3,aug, 2008.

[25] Djalal Eddine Khodja, Aissa Kheldoun and Larbi Refoufi, “Sigmoid
Function Approximation For ANN Implementation In FPGA Devic-
es”, Proceedings of the 9th WSEAS international conference on cir-
cuits,systems, electronics, control and signal processing,pp.112-
116,2010.(ISBN:978-960-474-262-2).

[26] Xiaobin, Lianwen, Dongsheng, Junxum, “A mixed Parallel Neural
Networks Computing Unit Implemented in FPGA”, IEEE Int. Conf.
Neural Networks & Signal Processing, China, pp.324-327, dec 14-17,
2003.

[27] http://bit.csc.lsu.edu/~jianhua/shiv2.pdf
[28] Valeriu Beiu, Jan Peperstraete, Joos Vandewalleand Rudy Lau-

wereins, “Close Approximations of Sigmoid Functions by Sum of
Steps for VLSI Implementation of Neural Networks”, The Scientific
Annals, Section: Informatics, vol. 40 (XXXX), no. 1, 1994.

[29] K.Basterretxea, and J.M.Tarela, “Approximation of sigmoid function
and the derivative for artificial neurons”, in Mastorakis, N. (Ed.): Ad-
vances in neural networks and applications, WSES Press, Athens,
pp.397–401, 2001.

[30] M.T.Tommiska,“Efficient digital implementation of the sigmoid
function for reprogrammable logic”, IEE Proc.-Comput. Digit.Tech,
vol. 150, no. 6, pp. 403-411,nov, 2003.

[31] Manish Panicker, C.Babu, (2012) “Efficient FPGA Implementation of Sig-
moid and Bipolar Sigmoid Activation Functions for Multilayer Percep-
trons”, IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021, vol. 2,
no 6, pp. 1352-1356, june, 2012.

[32] I. Sahin, I. Koyuncu, “Design and Implementation of Neural Net-
works Neurons with RadBas,LogSig, and TanSig Activation Func-
tions on FPGA”, Electronics And Electrical Engineering, Issn 1392 –
1215, no. 4(120),2012.

[33] S.N.Sivanandam, Introduction to Neural Networks Using Matlab 6.0.
Sumathi, Deepa.m, Tata McGraw-Hill, ISBN 0-07-059112-1, 2006.

 [34] Antonio de Padua Braga, Tiago Mendonca Dasilva, Willian Soares
Lacerda,“Pipelined on-line Back-propagation training of an artificial
neural network on a parallel multiprocessor system”, Learning and
Nonlinear Module(L&NLM)-Journal of the Brazillian Society on Neural
Networks, vo1.8,no.2,pp.120-123, 2010.

[35]http://business.highbeam.com/articles/436704/international-
journal-information-technology

[36] http://alexandria.tue.nl/repository/books/644229.pdf
[37] Zhu and P.Sutton, “FPGA implementation of Neural Networks: A

Survey of a Decade of Progress”, Lecture Notes in Computer Science,
vol. 2778/2003, pp. 1062-1066, 2003.

[38] Mark Pethick, Michael Liddle, Paul Werstein, and Zhiyi Huang,
“Parallelization of a Backpropagation Neural Network on a Cluster
Computer”, 15th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, pp. 574-582, 2003.

